
bulk_extractor: A Stream-Based Forensics Tool

Simson L. Garfinkel
Associate Professor, Naval Postgraduate School
October 26, 2011
http://afflib.org/

1

http://afflib.org
http://afflib.org

NPS is the Navy’s Research University.

Location: ! Monterey, CA
Students: 1500
§ US Military (All 5 services)
§ US Civilian (Scholarship for Service & SMART)
§ Foreign Military (30 countries)
§ All students are fully funded

Schools:
§ Business & Public Policy
§ Engineering & Applied Sciences
§ Operational & Information Sciences
§ International Graduate Studies

NCR Initiative:
§ 8 offices on 5th floor, 900N Glebe Road, Arlington
§ FY12 plans: 4 professors, 2 postdocs
§ IMMEDIATE OPENINGS FOR RESEARCHERS
§ IMMEDIATE SLOTS FOR .GOV PHDs!

2

Traditionally forensics was used for convictions.
Increasingly it’s being used for investigations.
The goal was establishing possession of contraband information.
§ Child Pornography
§ Stolen documents.
§ Hacker tools

Our research is aimed at using forensics as an investigative tool.
§ Tracing information flow within an organization.
§ Identifying a subject’s:

—contacts
—aliases
—pattern of life

§ Automatically identifying actionable information.

3

Automation is essential.
§ Today most forensic analysis is done manually.
§ We are developing techniques & tools to allow automation.

Concentrate on the invisible.
§ It’s easy to wipe a computer….
§ … but targets don’t erase what they can’t see.
§ So we target:

—Deleted and partially overwritten files.
—Fragments of memory in swap & hibernation.
—Tool marks.

Large amounts of data is essential.
§ We purchase used hard drives from all over the world.
§ We manufacture data in the lab for use in education and publications.

Three principles underly our research.

4

corresponding to deleted files, the restart markers are
searched. After identifying any of the seven restart markers,
all the bits prior to marker position are discarded and resulting
data is merged with the first part of the file or with the header
extracted from the original JPEG file and decoded. Recovered
files are displayed in Fig. 5. It can be seen that fragments of the
original file can be successfully recovered. It should be noted
that because the stored image size in the header is not
modified, in all cases images appear in the right size, but the
content is shifted.

5.2. Recovery of stand-alone fragments by use of pseudo
headers

Obviously without a valid header, a JPEG file or a part of it
cannot be decoded. Given this fact, in this section, we pose the
question of what information one will need to reconstruct
a pseudo header that can be utilized in decoding of a stand-
alone file fragment. The information that can be inferred by
analysis of encoded file data will not be sufficient to recon-
struct a file header. Our premise is that image files stored on
a recovery medium will be interrelated to some extent. This
relation may exist because images may have been captured by
the same camera, edited by the same software tools, or
downloaded from the same Web pages. All these factors

induce different levels of shared information among the
neighboring files in terms of their encoding properties which
may vary from image quality settings to specifications of the
encoder. Therefore, in essence, we will investigate the
possible use of encoding related information from recovered
files in recovery of stand-alone fragments.

Considering only baseline JPEG/JFIF images, the most
common JPEG encoding method used by most digital cameras
and on the Web, the information needed to encode/decode an
image can be categorized into four types. These are:

1. the width and height of the image specified in number of
pixels;

2. the 8! 8 quantization tables used during compression;
3. the number of color components and type of chroma sub-

sampling used in composition of MCUs; and
4. the Huffman code tables.

Decoder essentially needs image size so that the number of
MCUs can be computed and the image blocks obtained by
decoding of each of the MCUs can be laid out at their proper
locations on the image. Since the encoded values are not the
quantized values, but the associated quantizer bin values,
quantization tables are needed to perform de-quantization
prior to inverse-DCT transformation. The composition of

Fig. 5 – Recovered files after erasure of random amounts of data from tail (upper left), center (upper center and right), and
both header and tail parts (lower row) of the original image.

d i g i t a l i n v e s t i g a t i o n 6 (2 0 0 9) S 8 8 – S 9 8 S95

We analyzed 2000 hard drives.
§ Find IP packets in swap & hibernation files.
§ Extract ethernet MAC addresses.

Post-processing identifies:
§ Shared wireless routers.
§ Common ethernet routers.

Validation:
§ Reconstructed networks came

from same organization.

—Forensic Carving of Network Packets and Associated Data Structures,
Beverly & Garfinkel, DFRWS 2011, August 2011, New Orleans

Given sufficient data, we can automatically assemble
complex social network diagrams

5

This talk introduces digital forensics and presents
bulk_extractor, a research tool that you can use today!
Introducing Digital Forensics

 a bulk_extractor success story

! how bulk_extractor works

! ! The future

6

Introducing Digital Forensics

Data extraction is the first step of forensic analysis

“Imaging tools” extract the data without modification.

§ "Forensic copy" or "disk image."

8

Forensic copy (“disk image”)
stored on a storage array.

Original device stored in
evidence locker.

“Write Blocker” prevents
accidental overwriting.

Write blockers are also used with USB drives, phones.

9

Digital forensic tools to view the evidence.

Today's tools allow the examiner to:
§ Display of allocated & deleted files.
§ String search.
§ Data recovery and file carving.
§ Examining individual disk sectors in hex, ASCII and Unicode

10

EnCase Enterprise by Guidance Software

The last decade was a "Golden Age" for digital forensics.

Widespread use of Microsoft Windows, especially Windows XP

Relatively few file formats:
§ Microsoft Office (.doc, .xls & .ppt)
§ JPEG for images
§ AVI and WMV for video

Most examinations confined to a single computer
belonging to a single subject

Most storage devices used a standard interface.
§ IDE/ATA
§ USB

11

Today there is a growing digital forensics crisis.

We have identified 5 key problems.

12

Problem 1 - !Increased cost of extraction & analysis.

Data: too much and too complex!
§ Increased size of storage systems.

§ Cases now require analyzing multiple devices
—2 desktops, 6 phones, 4 iPods, 2 digital cameras = 1 case

§ Non-Removable Flash

§ Proliferation of operating systems, file formats and connectors
—XFAT, XFS, ZFS, YAFFS2, Symbian, Pre, iOS,

FBI Regional Computer Forensic Laboratories growth:
§ Service Requests: 5,057 (FY08) ➔ 5,616 (FY09) (+11%)
§ Terabytes Processed: 1,756 (FY08) ➔ 2,334 (FY09) (+32%)

13

Problem 2 — Cell phones pose special challenges

Data Extraction:
§ No standard connectors.
§ No standard way to copy data out.
§ Difficult to image cell phones without changing them.
§ Many phones can be remotely wiped.

Data Understanding:
§ Data stored in proprietary formats.
§ Vendors frequently change internal structures.

NIST's Guidelines on Cell Phone Forensics:
§ "searching Internet sites for developer, hacker,

and security exploit information."

How do we analyze 100,000 apps?

14

Pervasive Encryption — Encryption is increasingly present.
§ TrueCrypt
§ BitLocker
§ File Vault
§ DRM Technology

Cloud Computing — End-user systems won't have the data.
§ Google Apps
§ Microsoft Office 2010
§ Apple Mobile Me

§ Our only hope:
—Browser caches & virtual memory… (for now)

Problem 3 — Encryption and Cloud Computing
! ! make it hard to get to the data

15

 Home Documentation Downloads News Future History Screenshots Donations FAQ Forum Contact

News

• 2010-07-19
TrueCrypt 7.0
Released

• 2009-11-23
TrueCrypt 6.3a
Released

• 2009-10-21
TrueCrypt 6.3
Released

[News Archive]

Donations

T r u e C r y p t

Free open-source disk encryption software for Windows 7/Vista/XP, Mac OS X, and Linux

Main Features:

Creates a virtual encrypted disk within a file and mounts it as a real disk.

Encrypts an entire partition or storage device such as USB flash drive or hard drive.

Encrypts a partition or drive where Windows is installed (pre-boot authentication).

Encryption is automatic, real-time (on-the-fly) and transparent.

Parallelization and pipelining allow data to be read and written as fast as if the drive was not encrypted.

Encryption can be hardware-accelerated on modern processors.

Provides plausible deniability, in case an adversary forces you to reveal the password:

Hidden volume (steganography) and hidden operating system.

More information about the features of TrueCrypt may be found in the documentation.

What is new in TrueCrypt 7.0 (released July 19, 2010)

Statistics (number of downloads)

Site Updated July 31, 2010 • Legal Notices • Sitemap • Search

Secure
encrypted USB
Buy safe
hardware based
USB drive 1 GB to
32GB
www.altawareonline.com

256-bit AES
encryption
Protect your data
with encryption
software. Free
how to guide.
Datacastlecorp.com/encryption

StorageCrypt v3.0
Encrypt and password protect usb flash
drive , external hard drive
www.magic2003.net

Problem 4 — RAM and hardware forensics is really hard.

RAM Forensics—in its infancy
§ RAM structures change frequently (no reason for them to stay constant.)
§ RAM is constantly changing.

Malware can hide in many places:
§ On disk (in programs, data, or scratch space)
§ BIOS & Firmware
§ RAID controllers
§ GPU
§ Ethernet controller
§ Motherboard, South Bridge, etc.
§ FPGAs

16

The One Laptop Per Child Security Model

Simson L. Garfinkel
Naval Postgraduate School

Monterey, CA

simsong@acm.org

Ivan Krstić
One Laptop Per Child

Cambridge, MA

ivan@laptop.org

ABSTRACT
We present an integrated security model for a low-cost lap-
top that will be widely deployed throughout the developing
world. Implemented on top of Linux operating system, the
model is designed to restrict the laptop’s software without
restricting the laptop’s user.

Categories and Subject Descriptors
D.4.6.c [Security and Privacy Protection]: Cryptographic
Controls; H.5.2.e [HCI User Interfaces]: Evaluation/methodology

General Terms
Usability, Security

Keywords
BitFrost, Linux

1. INTRODUCTION
Within the next year more than a million low-cost laptops

will be distributed to children in developing world who have
never before had direct experience with information tech-
nology. In two years’ time the number of laptops should rise
to more than 10 million. The goal of this “One Laptop Per
Child” project is to use the power of information technology
to revolutionize education and communications within the
developing world.

Each of these children’s “XO” laptops will run a vari-
ant of the Linux operating system and will participate in
a wireless mesh network that will connect to the Internet
using gateways located in village schools. The laptops will
be equipped with web browsers, microphones and cameras
so that the students can learn of the world outside their
communities and share the details of their lives with other
children around the world.

Attempting such a project with existing security mecha-
nisms such as anti-virus and personal firewalls would likely

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

SOUPS 2007 Pittsburgh, PA

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

Figure 1: The XO Laptop

be disastrous: soon after deployment, some kind of mali-
cious software would inevitably be introduced into the lap-
top communities. This software might recruit the million-
plus laptops to join “botnets.” Other attackers might try
to disable the laptops out of spite, for sport, as the basis
of an extortion attempt, or because they disagree with the
project’s stated goal of mass education.

Many computer devices that are seen or marketed as “ap-
pliances” try to dodge the issue of untrusted or malicious
code by only permitting execution of code that is crypto-
graphically signed by the vendor. In practice, this means the
user is limited to executing a very restricted set of vendor-
provided programs, and cannot develop her own software or
use software from third party developers. While this ap-
proach certainly limits possible attack vectors, it is not a
silver bullet, because even vendor-provided binaries can be
exploited—and frequently are.

A more serious problem with the “lock-down” approach is
that it would limit what children could do with the laptops
that we hope to provide. The OLPC project is based, in
part, on constructionist learning theories [15]. We believe
that by encouraging children to be masters of their comput-
ers, they will eventually become masters of their education
and develop in a manner that is more open, enthusastic and
creative than they would with a machine that is locked and
not “hackable.”

Problem 5 — Time is of the essence.

Most tools were designed to perform a complete analysis.
§ Find all the files.
§ Index all the terms.
§ Report on all the data.
§ Take as long as necessary!

Increasingly we are racing the clock:
§ Police prioritize based on statute-of-limitations!
§ Battlefield, Intelligence & Cyberspace

operations require turnaround in days or hours.
§ Log files & data preservation.

—Data may be wiped before you act.

17

Data quality makes digital forensics hard.

Any piece of data may be critical.
§ Heterogeneity is a problem.

—Address books
—Email
—Documents
—Photos

§ Each of these objects requires a different kind of analysis.

Frequently we are reading data differently than intended.
§ Compressed data is not designed to be “recoverable” if the first half is missing.
§ File systems not designed to permit “undeleting” files.
§ Windows Hibernation files designed for single-use.

—Computer Science lacks techniques for resolving corrupted data structures.

18

Newly written data

Earlier JPEG

Data quantity make digital forensics hard too!

Quantity: analysts have less time than the subject!
§ User spent years assembling email, documents, etc.
§ Analysts have days or hours to process it.

There is no resource advantage.
§ Police analyze top-of-the-line systems … with top-of-the-line systems.
§ National Labs have large-scale server farms … to analyze huge collections.

DF researchers must respond by developing new algorithms that:
—Provide incisive analysis through cross-drive analysis.
—Operate autonomously on incomplete, heterogeneous datasets.

19

Stream-based forensics with
bulk_extractor

Stream-Based Disk Forensics:
Scan the disk from beginning to end; do your best.

1. Read all of the blocks in order.
2. Look for information that might be useful.
3. Identify & extract what's possible in a single pass.

21

0 1TB 3 hours, 20 min
to read the data

http://www.flickr.com/photos/kevincollins/38513145/sizes/o/in/photostream/
http://www.flickr.com/photos/kevincollins/38513145/sizes/o/in/photostream/

Primary Advantage: Speed

No disk seeking.

Potential to read and process at disk’s maximum transfer rate.

Potential for intermediate answers.

Reads all the data — allocated files, deleted files, file fragments.
§ Separate metadata extraction required to get the file names.

22
0 1TB

Primary Disadvantage: Completeness

Fragmented files won't be recovered:
§ Compressed files with part2-part1 ordering (possibly .docx)
§ Files with internal fragmentation (.doc but not .docx)

Fortunately, most files are not fragmented.
§ Individual components of a ZIP file can be fragmented.

Most files that are fragmented have carvable internal structure:
§ Log files, Outlook PST files, etc.

23

ZIP part 1ZIP part 2

This talk describes bulk_extractor,
a tool for performing stream-based forensics.

Why you should care: a bulk_extractor success story

History of bulk_extractor

Internal design

Suppressing false positives with context sensitive stop lists.

Extending bulk_extractor with plug-ins

Future Plans

24

A bulk_extractor
Success Story

http://www.sanluisobispovacations.com/

http://www.sanluisobispovacations.com
http://www.sanluisobispovacations.com

City of San Luis Obispo Police Department, Spring 2010

District Attorney filed charges against two individuals:
§ Credit Card Fraud
§ Possession of materials to commit credit card fraud.

Defendants:
§ Arrested with a computer.
§ Expected to argue that defends were unsophisticated and lacked knowledge.

Examiner given 250GiB drive the day before preliminary hearing.
§ Typically, it would take several days to conduct a proper forensic investigation.

26

bulk_extractor found actionable evidence in 2.5 hours!

Examiner given 250GiB drive the day before preliminary hearing.

Bulk_extractor found:
§ Over 10,000 credit card numbers on the HD (1000 unique)
§ Most common email address belonged to the primary defendant (possession)
§ The most commonly occurring Internet search engine queries concerned credit card

fraud and bank identification numbers (intent)
§ Most commonly visited websites were in a foreign country whose primary language is

spoken fluently by the primary defendant.

Armed with this data, the DA was able to have the defendants held.

27

Faster than conventional tools.
Finds data that other tools miss.
Runs 2-10 times faster than EnCase or FTK on the same hardware.
§ bulk_extractor is multi-threaded; EnCase 6.x and FTK 3.x have little threading.

Finds stuff others miss.
§ “Optimistically” decompresses and re-analyzes all data.
§ Finds data in browser caches (downloaded with zip/gzip), and in many file formats.

Presents the data in an easy-to-understand report.
§ Produces “histogram” of email addresses, credit card numbers, etc.
§ Distinguishes primary user from incidental users.

28

History of bulk_extractor

bulk_extractor: 20 years in the making!

In 1991 I developed SBook, a free-format address book.

SBook used “Named Entity Recognition” to find addresses, phone
numbers, email addresses while you typed.

30

1: Getting Started with SBook

SBook: Simson Garfinkel’s Address Book 5

SBook has several features that make it especially easy to type in a new entry:

• When a new entry is created, its name is selected and highlighted. Just start typing
the name of the new entry to replace the dummy name. As you type, the name will
appear simultaneously in the display and the matrix above.

• After you type the name and hit return, SBook automatically selects and highlights
“Address” on the template so that you can immediately begin typing in the address
font.

• Type as many addresses and phone numbers as you like. Whether you are typing
new information or editing old information, SBook places address and phone
icons automatically, in all the right places, while you type.

Deleting entries
You can delete one or several entries from an SBook file by selecting the names of the
entries that you want to delete in the matrix, and then choosing Edit>Delete entry
(command-D). An alert panel will appear on the screen asking you to confirm that you
really want to delete the entries.

Click YES (the default) to delete the entries, and NO to cancel the request for deletion.

If there is only one entry, the
panel will refer to it by name.

If there are several entries, the panel will
warn you how many you are about to delete.

Today we call this technology Named Entity Recognition

SBook’s technology was based on:
§ Regular expressions executed in parallel

—US, European, & Asian Phone Numbers
—Email Addresses
—URLs

§ A gazette with more than 10,000 names:
—Common “Company” names
—Common “Person” names
—Every country, state, and major US city

§ Hand-tuned weights and additional rules.

Implementation:
§ 2500 lines of GNU flex, C++
§ 50 msec to evaluate 20 lines of ASCII text.

—Running on a 25Mhz 68030 with 32MB of RAM!

31

In 2003, I bought 200 used hard drives

The goal was to find drives that had not been properly sanitized.

First strategy:
§ DD all of the disks to image files
§ run strings to extract printable strings.
§ grep to scan for email, CCN, etc.

—VERY SLOW!!!!
—HARD TO MODIFY!

Second strategy:
§ Use SBook technology!
§ Read disk 1MB at a time
§ Pass the raw disk sectors to flex-based scanner.
§ Big surprise: scanner didn’t crash!

32

Simple flex-based scanners required substantial
post-processing to be useful
Techniques include:
§ Additional validation beyond regular expressions (CCN Luhn algorithm, etc).
§ Examination of feature “neighborhood” to eliminate common false positives.

The technique worked well to find drives with sensitive information.

33
.

0

200

10, 000

20, 000

30, 000

40, 000
Unique CCNs

Total CCNs

Between 2005 and 2008, we interviewed law enforcement
regarding their use of forensic tools.
Law enforcement officers wanted a highly automated tool for finding:
§ Email addresses
§ Credit card numbers (including track 2 information)
§ Search terms (extracted from URLs)
§ Phone numbers
§ GPS coordinates
§ EXIF information from JPEGs
§ All words that were present on the disk (for password cracking)

The tool had to:
§ Run on Windows, Linux, and Mac-based systems
§ Run with no user interaction
§ Operate on raw disk images, split-raw volumes, E01 files, and AFF files
§ Allow user to provide additional regular expressions for searches
§ Automatically extract features from compressed data such as gzip-compressed HTTP
§ Run at maximum I/O speed of physical drive
§ Never crash

34

Starting in 2008, we made a series of limited releases.
Today we are releasing bulk_extractor 1.0.0
§ January 2008 — Created Subversion Repository
§ April 2010 — Initial public release - 0.1.0
§ May 2010 — Initial multi-threading release - 0.3.0

—Each thread runs in its own process
§ Sept. 2010 — Stop lists - 0.4.0
§ Oct. 2010 — Context-based stop-lists - 0.5.0
§ Dec. 2010 — Switch to POSIX-based threads — 0.6.0
§ Dec. 2010 — Support for WIndows HIBERFIL.SYS decompression — 0.7.0
§ Jun. 2010 — First 1.0.0 Release (TODAY)

Tool capabilities result from substantial testing and user feedback.
Moving technology from the lab to the field has been challenging:
§ Must work with evidence files of any size and on limited hardware.
§ Users can't provide their data when the program crashes.
§ Users are analysts and examiners, not engineers.

35

Inside bulk_extractor

bulk_extractor: architectural overview

Written in C, C++ and GNU flex
§ Command-line tool.
§ Linux, MacOS, Windows (compiled with mingw)

Key Features:
§ “Scanners” look for information of interest in typical investigations.
§ Recursively re-analyzes compressed data.
§ Results stored in “feature files”
§ Multi-threaded

Java GUI
§ Runs command-line tool and views results

37

bulk_extractor extracts “features” from disk images.

38

202-555-1212

user@domain.com

http://www.nps.edu/

202-555-1212

user@domain.com

http://www.nps.edu/

mailto:user@domain.com
mailto:user@domain.com
mailto:user@domain.com
mailto:user@domain.com
http://www.nps.edu
http://www.nps.edu
mailto:user@domain.com
mailto:user@domain.com
http://www.nps.edu
http://www.nps.edu

bulk_extractor: system diagram

39

image_process
iterator

Bulk Data

Thread 0

Disk Image
E01
AFF

split raw

FilesFilesFilesFilesFilesFilesFiles

Bulk Data

Bulk Data

Threads 1-N

email.txt

kml.txt

ip.txt

Evidence Feature Files

email histogram

ip histogram

Histogram
processor

GUI

GUI

SBUFs

email scanner

acct scanner

kml scanner

GPS scanner

net scanner

zip scanner

pdf scanner

hiberfile scanner

aes scanner

wordlist scanner

rfc822

image processing
C++ iterator handles disks, images and files
Works with multiple disk formats.
§ E01
§ AFF
§ raw
§ split raw
§ individual disk files

Produces sbuf_t object:
class buf_t {
...
public:;
 uint8_t *buf; /* data! */
 pos0_t pos0; /* forensic path */
 size_t bufsize;
 size_t pagesize;
...
};

We chop the 1TB disk into 65,536 x 16MiB “pages” for processing.
40

image_process
iterator

Bulk Data

Thread 0

Disk Image
E01
AFF

split raw

FilesFilesFilesFilesFilesFilesFiles

Bulk Data

Bulk Data

Evidence

SBUFs

The “pages” overlap to avoid dropping features that cross
buffer boundaries.
The overlap area is called the margin.
§ Each sbuf can be processed in parallel — they don’t depend on each other.
§ Features start in the page but end in the margin are reported.
§ Features that start in the margin are ignored (we get them later)

—Assumes that the feature size is smaller than the margin size.
—Typical margin: 1MB

Entire system is automatic:
§ Image_process iterator makes sbuf_t buffers.
§ Each buffer is processed by every scanner
§ Features are automatically combined.

41

Disk Image

pagesize

bufsize

Scanners process an sbuf and extract features

scan_email is the email scanner.
§ inputs: sbuf objects

outputs:
§ email.txt

—Email addresses
§ rfc822.txt

—Message-ID
—Date:
—Subject:
—Cookie:
—Host:

§ domain.txt
—IP addresses
—host names

42

email.txt

ip.txt

SBUFs

email scanner

rfc822

The feature recording system saves features to disk.

Feature Recorder objects store the features.
§ Scanners are given a (feature_recorder *) pointer
§ Feature recorders are thread safe.

Features are stored in a feature file:
48198832 domexuser2@gmail.com tocol>____<name>domexuser2@gmail.com/Home</name>____
48200361 domexuser2@live.com tocol>____<name>domexuser2@live.com</name>____<pass
48413829 siege@preoccupied.net siege) O'Brien <siege@preoccupied.net>_hp://meanwhi
48481542 danilo@gnome.org Danilo __egan <danilo@gnome.org>_Language-Team:
48481589 gnom@prevod.org : Serbian (sr) <gnom@prevod.org>_MIME-Version:
49421069 domexuser1@gmail.com server2.name", "domexuser1@gmail.com");__user_pref("
49421279 domexuser1@gmail.com er2.userName", "domexuser1@gmail.com");__user_pref("
49421608 domexuser1@gmail.com tp1.username", "domexuser1@gmail.com");__user_pref("

43

email.txtemail scanner
email scanner

email scanner
email scanner

email scanner

offset feature feature in evidence context

mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
mailto:siege@preoccupied.net
http://meanwhi
http://meanwhi
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:danilo@gnome.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:gnom@prevod.org
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com

Email histogram allows us to rapidly determine:
§ Drive’s primary user
§ User’s organization
§ Primary correspondents
§ Other email addresses

Histograms are a powerful tool for understanding
evidence.

Drive #51
(Anonymized)

44

ALICE@DOMAIN1.com 8133
BOB@DOMAIN1.com 3504
ALICE@mail.adhost.com 2956
JobInfo@alumni-gsb.stanford.edu 2108
CLARE@aol.com 1579
DON317@earthlink.net 1206
ERIC@DOMAIN1.com 1118
GABBY10@aol.com 1030
HAROLD@HAROLD.com 989
ISHMAEL@JACK.wolfe.net 960
KIM@prodigy.net 947
ISHMAEL-list@rcia.com 845
JACK@nwlink.com 802
LEN@wolfenet.com 790
natcom-list@rcia.com 763ALICE

BOB

CLAREDON317

The feature recording system automatically makes
historgrams.
Simple histogram based on feature:

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com

Based on regular expression extraction:
§ For example, extract search terms with .*search.*q=(.*)

n=18 pidgin
n=10 hotmail+thunderbird
n=3 Grey+Gardens+cousins
n=3 dvd
n=2 %TERMS%
n=2 cache:
n=2 p
n=2 pi
n=2 pid
n=1 Abolish+income+tax
n=1 Brad+and+Angelina+nanny+help
n=1 Build+Windmill
n=1 Carol+Alt

45

email.txt

ip.txt

email histogram

ip histogram

Histogram
processor

mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com

bulk_extractor has multiple feature extractors.
Each scanner runs in order. (Order doesn’t matter.)
Scanners can be turned on or off
§ Useful for debugging.
§ AES key scanner is very slow (off by default)

Some scanners are recursive.
§ e.g. scan_zip will find zlib-compressed regions
§ An sbuf is made for the decompressed data
§ The data is re-analyzed by the other scanners

—This finds email addresses in compressed data!

Recursion used for:
§ Decompressing ZLIB, Windows HIBERFILE,
§ Extracting text from PDFs
§ Handling compressed browser cache data

46

SBUFs

email scanner

acct scanner

kml scanner

GPS scanner

net scanner

zip scanner

pdf scanner

hiberfile scanner

aes scanner

wordlist scanner

Recursion requires a new way to describe offsets.
bulk_extractor introduces the “forensic path.”
Consider an HTTP stream that contains a GZIP-compressed email:

We can represent this as:
11052168704-GZIP-3437 live.com eMn='domexuser1@live.com';var srf_sDispM
11052168704-GZIP-3475 live.com pMn='domexuser1@live.com';var srf_sPreCk
11052168704-GZIP-3512 live.com eCk='domexuser1@live.com';var srf_sFT='<

47

email scannerzip scanner email.txt

image_process
iterator

SBUFs

mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com

GUI: 100% Java
Launches bulk_extractor; views results
Uses bulk_extractor to decode forensic path

48

email.txt

kml.txt

ip.txt

email histogram

ip histogram

GUI

rfc822

Crash Protection

Every forensic tool crashes.
§ Tools routinely used with data fragments, non-standard codings, etc.
§ Evidence that makes the tool crash typically cannot be shared with the developer.

Crash Protection: checkpointing!
§ Bulk_extractor checkpoints current page in the file config.cfg
§ After a crash, just hit up-arrow and return; bulk_extractor restarts at next page.

49

Integrated design, but compact.
2726 lines of code; 33 seconds to compile on an i5

50

image_process
iterator

Bulk Data

Thread 0

Disk Image
E01
AFF

split raw

FilesFilesFilesFilesFilesFilesFiles

Bulk Data

Bulk Data

Threads 1-N

email.txt

kml.txt

ip.txt

Evidence Feature Files

email histogram

ip histogram

Histogram
processor

GUI

GUI

SBUFs

email scanner

acct scanner

kml scanner

GPS scanner

net scanner

zip scanner

pdf scanner

hiberfile scanner

aes scanner

wordlist scanner

rfc822

Suppressing False Positives

Modern operating systems are filled with email addresses.

Sources:
§ Windows binaries
§ SSL certificates
§ Sample documents

It's important to suppress email addresses not relevant to the case.

Approach #1 — Suppress emails seen on many other drives.
Approach #2 — Stop list from bulk_extractor run on clean installs.

Both of these methods stop list commonly seen emails.
§ Operating Systems have a LOT of emails. (FC12 has 20,584!)
§ Problem: this approach gives Linux developers a free pass!

52

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com

mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com

Approach #3: Context-sensitive stop list.

Instead of a stop list of features, use features+context:

§ Offset:! 351373329
§ Email:!! zeeshan.ali@nokia.com

§ Context:! ut_Zeeshan Ali <zeeshan.ali@nokia.com>, Stefan Kost <

§ Offset:! 351373366
§ Email:!! stefan.kost@nokia.com

§ Context:! >, Stefan Kost <stefan.kost@nokia.com>____________sin

—Here "context" is 8 characters on either side of feature.
—We put the feature+context in the stop list.

The “Stop List” entry is the feature+context.
§ This ignores Linux developer email address in Linux binaries.
§ The email address is reported if it appears in a different context.

53

mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:zeeshan.ali@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com
mailto:stefan.kost@nokia.com

Total stop list: 70MB (628,792 features; 9MB ZIP file)

Sample from the stop list:
tzigkeit <gord@gnu.ai.mit.edu>___* tests/demo! sl3/fedora12-64/domain.txt
tzigkeit <gord@gnu.ai.mit.edu>___Reported by! sl3/fedora12-64/domain.txt
u-emacs-request@prep.ai.mit.edu (or the corresp! sl3/redhat54-ent-64/domain.txt
u:/pub/rtfm/" "/ftp@rtfm.mit.edu:/pub/usenet/" "! sl3/redhat54-ent-64/email.txt
ub/rtfm/" "/ftp@rtfm.mit.edu:/pub/usenet/" "! sl3/redhat54-ent-64/domain.txt
udson <ghudson@mit.edu>',_ "lefty"! sl3/redhat54-ent-64/domain.txt
ug-fortran-mode@erl.mit.edu__This list coll! sl3/redhat54-ent-64/domain.txt
uke Mewburn <lm@rmit.edu.au>, 931222_AC_ARG! sl3/fedora12-64/domain.txt
um _ * kit@expo.lcs.mit.edu_ */_#ifndef _As! sl3/redhat54-ent-64/email.txt
um _ * kit@expo.lcs.mit.edu_ */__#ifndef _A! sl3/redhat54-ent-64/email.txt
um _ * kit@expo.lcs.mit.edu_ */__#ifndef _S! sl3/redhat54-ent-64/email.txt

We created a context-sensitive stop list for Microsoft
Windows XP, 2000, 2003, Vista, and several Linux.

54

mailto:gord@gnu.ai.mit.edu
mailto:gord@gnu.ai.mit.edu
mailto:gord@gnu.ai.mit.edu
mailto:gord@gnu.ai.mit.edu
mailto:u-emacs-request@prep.ai.mit.edu
mailto:u-emacs-request@prep.ai.mit.edu
mailto:ftp@rtfm.mit.edu
mailto:ftp@rtfm.mit.edu
mailto:ftp@rtfm.mit.edu
mailto:ftp@rtfm.mit.edu
mailto:ghudson@mit.edu
mailto:ghudson@mit.edu
mailto:ug-fortran-mode@erl.mit.edu__This
mailto:ug-fortran-mode@erl.mit.edu__This
mailto:lm@rmit.edu.au
mailto:lm@rmit.edu.au
mailto:kit@expo.lcs.mit.edu_
mailto:kit@expo.lcs.mit.edu_
mailto:kit@expo.lcs.mit.edu_
mailto:kit@expo.lcs.mit.edu_
mailto:kit@expo.lcs.mit.edu_
mailto:kit@expo.lcs.mit.edu_

Applying it to domexusers HD image:
§ # of emails found: 9143 ➔ 4459

You can download the list today:
§ http://afflib.org/downloads/feature_context.1.0.zip

The context-sensitive stop list prunes the OS-supplied
features.

55

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=192 domexuser2@live.com
n=153 domexuser2@hotmail.com
n=146 domexuser1@hotmail.com
n=134 domexuser1@live.com
n=91 premium-server@thawte.com
n=70 talkback@mozilla.org
n=69 hewitt@netscape.com
n=54 DOMEXUSER2@GMAIL.COM
n=48 domexuser1%40gmail.com@imap.gmail.com
n=42 domex2@rad.li
n=39 lord@netscape.com
n=37 49091023.6070302@gmail.com

n=579 domexuser1@gmail.com
n=432 domexuser2@gmail.com
n=340 domexuser3@gmail.com
n=268 ips@mail.ips.es
n=252 premium-server@thawte.com
n=244 CPS-requests@verisign.com
n=242 someone@example.com
n=237 inet@microsoft.com
n=192 domexuser2@live.com
n=153 domexuser2@hotmail.com
n=146 domexuser1@hotmail.com
n=134 domexuser1@live.com
n=115 example@passport.com
n=115 myname@msn.com
n=110 ca@digsigtrust.com

without stop list with stop list

talkback@mozilla.org and other email

addresses were not
 eliminated because

they were present on the base OS installs.

http://afflib.org/downloads/feature_context.1.0.zip
http://afflib.org/downloads/feature_context.1.0.zip
http://afflib.org/downloads/feature_context.1.0.zip
http://afflib.org/downloads/feature_context.1.0.zip
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:ips@mail.ips.es
mailto:ips@mail.ips.es
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:CPS-requests@verisign.com
mailto:CPS-requests@verisign.com
mailto:someone@example.com
mailto:someone@example.com
mailto:inet@microsoft.com
mailto:inet@microsoft.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@hotmail.com
mailto:domexuser2@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:example@passport.com
mailto:example@passport.com
mailto:myname@msn.com
mailto:myname@msn.com
mailto:ca@digsigtrust.com
mailto:ca@digsigtrust.com
mailto:domexuser1@gmail.com
mailto:domexuser1@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser2@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser3@gmail.com
mailto:domexuser2@live.com
mailto:domexuser2@live.com
mailto:domexuser2@hotmail.com
mailto:domexuser2@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@hotmail.com
mailto:domexuser1@live.com
mailto:domexuser1@live.com
mailto:premium-server@thawte.com
mailto:premium-server@thawte.com
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:hewitt@netscape.com
mailto:hewitt@netscape.com
mailto:DOMEXUSER2@GMAIL.COM
mailto:DOMEXUSER2@GMAIL.COM
mailto:40gmail.com@imap.gmail.com
mailto:40gmail.com@imap.gmail.com
mailto:domex2@rad.li
mailto:domex2@rad.li
mailto:lord@netscape.com
mailto:lord@netscape.com
mailto:49091023.6070302@gmail.com
mailto:49091023.6070302@gmail.com
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org
mailto:talkback@mozilla.org

Extending bulk_extractor
with Plug-ins

Filenames can be added through post-processing.

bulk_extractor reports the disk blocks for each feature.

To get the file names, you need to map the disk block to a file.
§ Make a map of the blocks in DFXML with fiwalk (http://afflib.org/fiwalk)
§ Then use python/identify_filenames.py to create an annotated feature file.

57

.

.

http://afflib.org/fiwalk
http://afflib.org/fiwalk

bulk_diff.py: compare two different bulk_extractor reports

The “report” directory contains:
§ DFXML file of bulk_extractor run information
§ Multiple feature files.

bulk_diff.py: create a “difference report” of two bulk_extractor runs.
§ Designed for timeline analysis.
§ Developed with analysts.
§ Reports “what’s changed.”

—Reporting “what’s new” turned out to be more useful.
—“what’s missing” includes data inadvertently overwritten.

58

bulk_extractor extended to recognize and validate network data.
§ Automated extraction of Ethernet MAC addresses from IP packets in hibernation files.

We then re-create the physical networks the computers were on:

IP Carving and Network Reassembly plug-in

59

C++ programmers can write C++ plugins

Plugins are distributed as shared libraries.
§ Windows: scan_bulk.DLL
§ Mac & Linux: scan_bulk.so

Plugins must support a single function call:
void scan_bulk(const class scanner_params &sp,
 const recursion_control_block &rcb)

§ scanner_params — Describes what the scanner should do.
—sp.sbuf ! — SBUF to scan
—sp.fs! — Feature recording set to use
—sp.phase==0 — initialize
—sp.phase==1 — scan the SBUF in sp.sbuf
—sp.phase==2 — shut down

§ recursion_control_block — Provides information for recursive calls.

The same plug in system will be used by a future version of fiwalk.
§ The same plug-in will be usable with multiple forensic tools.

60

bulk_extractor future

bulk_extractor is an open source program!
You can help make it better.
Better handling of text:
§ MIME decoding (e.g. user=40localhost should be user@localhost)
§ Improved handling of Unicode.

More scanners
§ RAR & RAR2
§ LZMA
§ BZIP2
§ MSI & CAB
§ NTFS
§ VCARD

Reliability and conformance testing.

GET PAID TO WORK ON BULK_EXTRACTOR: ASK ME HOW!

62

In conclusion,
bulk_extractor is a powerful stream-based forensic tool.
Bulk_extractor demonstrates the power of:
§ Bulk data processing.
§ Carving EVERYTHING
§ Multi-threading (we can process data with 100% CPU utilization)

Bulk_extractor is 100% free software
§ Public Domain (work of US Government)
§ Please use the ideas in other programs!

—DFXML
—Job Distribution
—Forensic Path
—SBUF

§ Let’s keep the plug-in system consistent.
§ Download from http://afflib.org/

Questions?

63

