
1

Hello, World

public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello, World");
 }
}

Scott Lehman – Lifelong Geek
Tom Hallewell – Fed

The views expressed in this presentation do not reflect on those of our
employers.

Any resemblance to real events is coincidental.
2

Why Software Assurance?

• Software vulnerabilities are
one of the most common
sources of compromise.

• Software flaws can directly
impact Confidentiality,
Integrity, and Availability.

• Software developers rarely
receive any security-
focused training.

www.themailadmin.com

3

Why Static Analysis?

• Earliest possible
detection of security-
related flaws.

• Static Code Analysis can
begin before
functionality exists

• Manual code reviews are
subject to human limits

• Reviews are quick,
thorough and repeatable

• Humans are free to look
the “big picture”

stevewedig.com

4

Alternatives to Static Analysis
• Manual Code Review

– Requires your best developers to stop writing code
– Nearly impossible to examine every line
– The view is often myopic with very little consistency

• Automated Penetration Testing
– High confidence in findings
– Will find many deployment problems
– Coverage is rarely 100%.
– The best results require considerable “training” of the

scanner
• Manual Penetration Testing

– Requires an extreme skillset
– As much an “art” as a “science”

5

What’s your Angle?
Other groups have a stake in software quality

QA Teams look for
– Code reliability
– 508 compliance
– Adherence to organizational coding standards/best

practices

Since we represent Information Security, we decided
to focus on code that is:

– Exploitable
– Could affect the Confidentiality, Integrity, or Availability of

the system or data

6

What Languages do you need to
support?

7

Static Analysis Delivery Models

• Cloud/Software as a Service
• Central, Manual scanning
• Developer desktop scanning
• Central, Automated scanning
• Hybrid model

8

Products: It’s a Jungle out There!
• Buguroo
• Cppcheck
• Grammatech
• LDRA Testbed
• Monoidics INFER
• C++test & Jtest
• CodeSecure
• Armorize
• Coverity
• SofCheck Inspector for Java
• Checkmarx
• Klocwork
• Fortify
• BugScout
• Codesonar
• Sparrow
• Goanna
• Veracode (service, not a tool)
• Aspect Security ASC (service, not a tool)

And this was back
in 2012!

NASA.gov

9

Vendor Landscape

² S = Static Analysis
 D = Dynamic Analysis

Gartner Magic
Quadrant rating
¹ N = Niche Players
 C = Challengers
 V = Visionaries
 L = Leaders

Product

Ada
Android

APEX
ASP

ASP.Net

C/C++
C#

COBOL

ColdFusion

Flash
Objective C

Java
Javascript

JSP M
obile

.Net
Perl

PHP
PL/SQL

Python

Ruby
T-SQL

VB6
VB.Net

VBScript

Gartner Static¹

Gartner Dynamic¹ Method² Delivery Platform
AdaCore Codepeer X X X X N-A N-A S, D Server app
Aspect Security ASC X X X X X X X X X X X X X X N-A N-A S, D SaaS, Service, Server app
Bugaroo BugScout & BugBlast X X X X N-A N-A S, D SaaS, Appliance
Checkmarx X X X X X X X X X X X X X X X V N-A S Server app
Coverity X X X C N-A S Server app
Cppcheck X N-A N-A S Stand-alone app (Open Source)
FindBugs X N-A N-A S Stand-alone app (Open Source)
Fortify HP X X X X X X X X X X X X X X L L S, D Environment
GrammaTech X X V N-A S Environment
IBM Rational X X X X X X X X X X X X X L L S, D Environment
Klocwork X X X V N-A S Server app
LDRA Testbed X X N-A N-A S, D Server app
Parasoft C++test & Jtest X X X X X X C N S, D Environment
Red Lizard Software Goanna X N-A N-A S Environment
Veracode (service, not a tool) X X X X X X X X L V S, D SaaS

Research performed
3/2012

10

If I Were King…

You don’t need to buy a fancy tool to start your
program
• Commercial tools are expensive, and may not fill

your needs
• Do your proof-of-concept with a free tool

– Your organization may just not be ready for software
assurance

• Once you’ve built a process, start looking for the
perfect tool
– According to some sources, no single static analysis tool

will find all vulnerabilities

11

Get Management Support
• Demonstrate to senior management that this is important

– Statistics won’t do it by themselves
– FUD only goes so far

• This isn’t an easy sell – software assurance is expensive,
even if the tools are free
– You need a solid business case – can you show ROI?
– FUD only goes so far

• Line managers and project managers must clear time for
developer training
– Make sure the training is valuable

12

The Project Manager

www.cutevector.com

The Security Officer

http://bumpsandcurves.com

The Stakeholders
The Business Owner

Dreamstime.net

The Development Team

humanbeh-winter2010-topic11.wikispaces.com

13

The Security Officer
• “You don’t comply unless

you fix everything!”
• “Fix it all, regardless of

cost!”
– May not differentiate

between severity/risk of
findings

– Most findings are valid
• “Why can’t these people

just fix it?”

http://bumpsandcurves.com

Focus: Security and
Compliance
Usually runs the software
assurance program (ie,
your boss)

14

What you Need to Tell Him

• We are not going to get all findings resolved
overnight.

• If we are too heavy-handed, the software
assurance program will fail.
– Developers will find ways to evade the scans
– The Product Owner will get Senior Management

to pull the plug

15

The Project Manager
• “Will fixing this delay the

project?”
• “What do the developers

say?”
• May question the validity

of findings
• May escalate to Senior

Management

Focus: Product Delivery
Her career depends on
getting a working
product out on time

www.cutevector.com

16

What you Need to Tell Her

• There will never be zero findings.
• We will focus on low-hanging, high-impact

findings first, then raise the bar.
• We’re always available to help understand and

resolve findings

17

The Product Owner
• “What is the business

value of fixing this?”
• “This just a (….)

application, why all the
fuss about security?”

• May question the validity
of findings

• Is Senior Management

Focus: Product Usability
He needs a working
product yesterday to
support the mission

Dreamstime.net

18

What you Need to Tell Him

• You can’t put a dollar value on a compromise that
doesn't occur.
– This means that traditional ROI models will not show

value

• What does show value is improvement over time.
• We aren’t going to make the team fix findings just

because they exist.
– If a finding doesn’t prevent a risk, it doesn’t need to

be fixed right away – or ever?

19

The Development Team
• “Coding is my Art.”
• “These findings are bulls***!”
• “This is test code!”
• “We don’t have

time/resources/skillset to fix
these findings”

• May escalate to management
• Judged on code functionality,

features and delivery time, not
security

• Wants to deliver quality code,
but feels time-constrained

Focus: Get ‘er Done
If we don’t get this out
on Tuesday, we’re all
fired!

humanbeh-winter2010-topic11.wikispaces.co

20

What you Need to Tell Them
Pledge not to:
• Score “points” by finding lots of issues

– We’re in this together – there are enough real issues to focus on
• Point fingers or assign blame

– Let’s get these findings resolved and move on
• Whitewash the results

Commit to:
• Only flag findings that affect the security stance of the

application
• Being supportive, responsive and non-judgemental
• Provide meaningful feedback to development teams

21

The Software Assurance Team
(That’s you)

Focus: Get exploitable
findings resolved

www.wexfordgaa.ie

22

Remember, we’re all in this together!

security-marathon.be

23

This is not a Technical Issue!
Technically, it is pretty trivial to start a software assurance program:
• Procure a maximum of two servers
• Install and configure platform and dependencies
• Install the scan tool
• Schedule Training
• Integrate it into the build process, if possible
• Scan code!
• Interpret and communicate results
• Get developers to fix findings

Politically, it is a nightmare to implement
• Get top-down support
• Schedule Training

• Guarantee: at least 50% of scheduled
students can’t attend due to an emergency

• Integrate it into the build process, if possible
• You’ll be amazed at the reasons this is

impossible
• Interpret and communicate results
• Get developers to fix findings
 24

Process Depends on the Tool

You may point at a directory full of source code.
OR

You may have to scan in an actual build environment.

• You must scan ALL code that will be deployed.
• "Code Generation" must be taken into account.
• Only ignore “test code” when you are certain that

it can't be accidentally promoted.

25

“This Scan Frequency is Just Right…”
Too often:
• Drains resources
• Generates results faster than they can be

reviewed.
Too infrequently:
• Loses the advantage of fixing early in the cycle.

Suggestions:
• Daily: when code is changing rapidly
• Weekly: a good balance for many shops
• Timed with Sprints or Milestones
• Immediately before a Release

www.southernfriedscience.com
26

When Should you Fix Findings?
• On check-in?

– Force developers to remediate findings before they are allowed to
commit code to the repository

• Daily?
– Creates a lot of overhead, but gives developers to fix findings early

in the lifecycle

• Weekly?
– Be sure to synchronize your scans with the development cadence

• Timed with Sprints or Milestones?
– Findings may trigger re-work in a future Sprint

• Immediately before a Release?
– Use this scan for your compliance go/no-go decision
– This is the most expensive time to fix findings!

27

We Have Results!

What Now?
• Triage
• Communicate results to stakeholders
• Prepare to be underwhelmed

http://funny-pictures.picphotos.net

28

Triage
Divide your findings:
"False Positives"

– A good scanner is "pessimistic"
– There may be mitigations in place that the

scanner doesn't see
– Even a valid finding might be irrelevant in your

environment
Prioritize Valid Security Issues

High Risk, Easy to Fix
 to

Low Risk, Difficult to Fix
29

Take a Risk-based Approach

30
Source: HP Fortify

Rule Number One

Don’t call them bugs, flaws, vulnerabilities, or
errors.

They are FINDINGS.

Got it?

31

One More Time

Don’t call them bugs, flaws, vulnerabilities, or
errors.

They are FINDINGS.

Regardless of risk, severity or potential impact.

Don’t make me tell you again, foo…

Fanbox.com 32

Triage

• Requires an understanding of programming
• Strive for a single point of responsibility
• It’s hard for a developer to judge her own code

– But she’s still an invaluable resource.
• Helps understand findings.
• Helps determine the Level of Effort to resolve

• If developers perform the triage, you must verify!
• Developers typically underestimate risk and impact

33

Triage is a Process, not an Event
Triage is not decisive.

In an Agile environment, you still must convince the
Product Owner, not only that the finding presents a
risk, but that it is worth fixing.

Triage is not Final.
As long as code is in flux, scanning must continue.

Once code is stable, it’s a good practice to re-scan
whenever the scan tool/rule-packs are updated.

34

Communicating Results

Prepare for your findings to be challenged...

35

Communicating Results
Developers will tell you to show them an exploit
before they will fix a finding.

– This is a trap - a problem that can be fixed in five
minutes can require days to exploit!

Hackers:
• Work longer hours than we do
• Have less overhead than we do
• Often have stronger incentives than we do
• Might be smarter than we are

When in doubt, a finding should be addressed!
36

Remediation
• Establish and communicate clear priorities before

the first scan
• A problem is "fixed" when it is no longer found in a

scan
• Some findings are very hard to fix definitively

– Consider mitigation strategies

• Don’t let developers game the system!

37

You’ve heard this before

TRUST
BUT

VERIFY
38

Train Your Teams
Secure coding training makes good coders better coders

Suggested Developer Curriculum
• Intro to secure coding

• Use of the code-vetting tool
– Interpreting scan results

– Whitelisting false positives

– Resolving coding errors

– Reporting action taken

• Common coding errors and their
impact

• How to resolve coding errors

• Resources and references

Suggested Auditor Curriculum

• Secure coding in-depth
– Different languages
– Understanding context

• How to tune/customize
the analysis tool

• Whitelisting,
Remediating findings

• Your remediation policy

businessinsider.com

www.zazzle.com

39

Track your Team’s Progress over Time

• Shows whether you are gaining traction
• Helps identify areas for future developer

training
• Shows you when it’s time to ingest another

project
• Management loves graphics

Some scanning tools generate pretty reports and charts

40

A Tale of Two Teams

We began a pilot with two teams working on
two distinct development projects….

sel.barc.usda.gov

41

System A Code Scan Results

252

Statistics:
8/22

• Lines of Code: 37,191 *
• Total Findings: 691
• Findings per line: 0.0186

9/11
• Lines of Code: 29,366 *
• Total Findings: 212
• Findings per line: 0.0072
61 % reduction in FPL!

9/11 scan Results

* For the 9/11 scan, we removed
all directories named “test” from
the scan base.

Level Total Actionable Reduction

Critical 1 1 92%

High 25 10 92%

Medium 0 0 N-A

Low 186 6 73%

Total 212 17 68%
42

Some Teams Get it…

Highlights Magazine – manipulated by Tom Hallewell

43

Project B Code Scan Results

Statistics:
8/22

• Lines of Code: 141,224
• Total Findings: 1114
• Findings per line: 0.0079

9/11
• Lines of Code: 110,812 *
• Total Findings: 1217
• Findings per line: 0.0110

9/25
• Lines of Code: 105,636 *
• Total Findings: 1100
• Findings per line: 0.0104

Observations:
• 38% of total findings due to issues with XML

stylesheets
• Many are inherited from upstream systems and

cannot be resolved by the Project B Team
• However, Project B continues to implement

improperly configured stylesheets from other
sources (5% increase from 9/11 scan)

311

422
401

* We continue to remove any
directories identified as “test-
related” from the scan base.

44

Limbo in Reverse

45

1. Keep your expectations low at first
2. Celebrate small successes
3. Gradually raise the bar

wipwapweb.com

Think big, start small

• Onboard projects in waves
• Make sure each project is a

success before onboarding
another one

• Remember, software grief is
endless – be sure you have
enough resources to continue
to support existing projects
before you take on another one

 46

Gettingbusinessresults.wordpress.com

47

	Slide Number 1
	Hello, World
	Why Software Assurance?
	Why Static Analysis?
	Alternatives to Static Analysis
	What’s your Angle?
	What Languages do you need to support?
	Static Analysis Delivery Models
	Products: It’s a Jungle out There!
	Vendor Landscape
	If I Were King…
	Get Management Support
	The Stakeholders
	The Security Officer
	What you Need to Tell Him
	The Project Manager
	What you Need to Tell Her
	The Product Owner
	What you Need to Tell Him
	The Development Team
	What you Need to Tell Them
	The Software Assurance Team�(That’s you)
	Remember, we’re all in this together!
	This is not a Technical Issue!
	Process Depends on the Tool
	“This Scan Frequency is Just Right…”
	When Should you Fix Findings?
	We Have Results!
	Triage
	Take a Risk-based Approach
	Rule Number One
	One More Time
	Triage
	Triage is a Process, not an Event
	Communicating Results
	Communicating Results
	Remediation
	You’ve heard this before
	Train Your Teams
	Track your Team’s Progress over Time
	A Tale of Two Teams
	Slide Number 42
	Some Teams Get it…
	Slide Number 44
	Limbo in Reverse�
	Think big, start small�
	Slide Number 47

